Abstract

The purpose of this study was to compare the fractional contributions of the three pathways of lactate transport (band 3 system, nonionic diffusion, and monocarboxylate pathway) into red blood cells (RBC) from trained and untrained humans. Blood samples were obtained from 19 male subjects: 5 untrained, 5 aerobically-trained, 5 competitive collegiate cross-country runners, and 4 competitive collegiate sprinters. The influx of lactate into the RBC was measured by a radioactive tracer technique using [14C]lactate. Discrimination of each pathway of lactate transport was achieved by using PCMBS (1 mM) to block the monocarboxylate pathway and DIDS (0.2 mM) to block the band 3 system. Nonionic diffusion was calculated as the difference between total lactate influx and the sum of band 3 and monocarboxylate lactate influx. Total lactate influx into the RBC from the more aerobic individuals (trained subjects and cross-country runners) was significantly faster at 1.6 mM lactate concentration ([La]) as compared with the influx into RBC of the untrained subjects. Total influx of lactate was significantly higher (P < 0.05) in the RBC from the sprinters as compared with that in the RBC from the untrained subjects at 41 mM [La]. There were no significant differences among the four groups with regard to the total influx of lactate at 4.1, 8.1, and 20 mM [La]. In general, the percentage of total lactate influx accounted for by each of the three parallel pathways at 1.6, 8.1, and 41.0 mM [La] was not different among the four groups of subjects. Overall, the groups were more similar than different with regard to RBC lactate influx.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.