Abstract

Age-dependent poliomyelitis (ADPM) or murine amyotrophic lateral sclerosis (ALS) is a murine paralytic disease triggered in immunosuppressed genetically-susceptible mice by infection with the arterivirus lactate dehydrogenase-elevating virus (LDV). This disease provides an animal model for ALS, affecting anterior horn neurons and resulting in neuroparalysis 2–3 weeks after LDV infection. We have tested the hypothesis that spinal cord apoptosis is a feature of the LDV-induced murine ALS, since apoptosis is postulated to be a causal factor in human ALS. Gene microarray analyses of spinal cords from paralyzed animals revealed upregulation of several genes associated with apoptosis. Spinal cord apoptosis was investigated further by TUNEL and activated caspase-3 assays, and was observed to emerge concurrent with paralytic symptoms in both neuronal and non-neuronal cells. Caspase-3-dependent apoptosis was also triggered in cultured macrophages by neurovirulent LDV infection. Thus, virus-induced spinal cord apoptosis is a pre-mortem feature of ADPM, which affects both neuronal and support cells, and may contribute to the pathogenesis of this ALS-like disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.