Abstract

Breast cancer is the second leading cause of cancer death in women after lung cancer. The first-line treatment of metastatic breast cancer in premenopausal women relies on tamoxifen. The development of tamoxifen resistance is not fully understood. In this study, capillary electrophoresis with capacitively coupled contactless conductivity detector was developed to monitor the changes in lactate and pyruvate levels in supernatant media of three models of developed MCF-7 tamoxifen-resistant cells and correlate these metabolites changes with lactate dehydrogenase genes expression and glucose consumption. The electrophoretic separation was achieved under reversed electroosmotic flow conditions. The linear ranges were 0.15-5 and 0.01-1mM with a correlation coefficient of 0.9966 and 0.9971 and the limits of detection were 0.01 and 0.02μM for lactate and pyruvate, respectively. Inter- and intrarun accuracy were in the range of 96.88-105.94% with precision (CV, %) of ≤7.35%. The method was completely validated and the results were in agreement with those obtained using the lactate and glucose assay kits. The results revealed a significant increase in both lactate and pyruvate production in the three tamoxifen-resistant MCF-7 cells models compared to control cells. This increase was correlated with the increase of lactate dehydrogenase genes expression and the increase of glucose consumption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call