Abstract

Reprogramming of energy metabolism is a key hallmark of cancer. Most cancer cells display a glycolytic phenotype, with increased glucose consumption and glycolysis rates, and production of lactateas the end product, independently of oxygen concentrations. This phenomenon, known as "Warburg Effect", provides several survival advantages to cancer cells and modulates the metabolism and function of neighbour cells in the tumour microenvironment. However, due to the presence of metabolic heterogeneity within a tumour, cancer cells can also display an oxidative phenotype, and corruptible cells from the microenvironment become glycolytic, cooperating with oxidative cancer cells to boost tumour growth. This phenomenon is known as "Reverse Warburg Effect". In either way, lactate is a key mediator in the metabolic crosstalk between cancer cells and the microenvironment, and lactate transporters are expressed differentially by existing cell populations, to support this crosstalk.In this review, we will focus on lactate and on lactate transporters in distinct cells of the tumour microenvironment, aiming at a better understanding of their role in the acquisition and maintenance of the direct/reverse "Warburg effect" phenotype, which modulate cancer progression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call