Abstract

Stapling of side chains to stabilize an α-helical structure has been generally associated with an increased uptake of CPPs. Here, we compare four amphiphilic stapled peptides with their linear counterparts in terms of their membrane binding and conformational features in order to correlate these with uptake efficiency and toxicological effects. The impact of lactam stapling was found to vary strongly with regard to the different aspects of peptide-membrane interactions. Nearly all stapled peptides caused less membrane perturbation (vesicle leakage, hemolysis, bacterial lysis) than their linear counterparts. In one case (MAP-1) where stapling enhanced α-helicity in aqueous and lipid environments, leakage was eliminated while cell uptake in HEK293 and HeLa cells remained high, which improved the overall characteristics. The other systems (DRIM, WWSP, KFGF) did not improve, however. The data suggest that cell uptake of amphipathic CPPs correlates with their adopted α-helix content in membranes rather than their helicity in solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call