Abstract

A new cerium-doped LaCl 3(Ce) scintillator is evaluated with respect to the application in environmental gamma-ray dosimetry and spectrometry. The scintillator is very attractive for gamma-ray spectrometry in the case of high count rate, because it has excellent energy resolution and fast decay time. The performance characteristics of a scintillator with a 25.4 mm×25.4 mm LaCl 3(Ce) crystal are studied and compared to those of a NaI(Tl) scintillator with the same size crystal. Acquired pulse height spectra are converted to dose rates by using the G ( E ) function method. Though the LaCl 3(Ce) crystal itself produces a rather high background in the crystal itself, the scintillator provides good energy information and dose-rate readings from low to high-level (several mGy/h) by subtracting the self-background. The properties of LaCl 3(Ce) scintillator suggest that the scintillator could be a promising candidate for monitoring at high dose levels as in emergencies, as well as at ordinary levels of background radiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.