Abstract

Trimethylated H3K27 (H3K27me3) is associated with transcriptional repression, and its abundance in chromatin is frequently altered in cancer. However, it has remained unclear how genomic regions modified by H3K27me3 are specified and formed. We previously showed that downregulation of transcription by oncogenic Ras signaling precedes upregulation of H3K27me3 level. Here, we show that lack of transcription as a result of deletion of the transcription start site of a gene is sufficient to increase H3K27me3 content in the gene body. We further found that histone deacetylation mediates Ras-induced gene silencing and subsequent H3K27me3 accumulation. The H3K27me3 level increased gradually after Ras activation, requiring at least 35days to achieve saturation. Such maximal accumulation of H3K27me3 was reversed by forced induction of transcription with the dCas9-activator system. Thus, our results indicate that changes in H3K27me3 level, especially in the body of a subset of genes, are triggered by changes in transcriptional activity itself.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.