Abstract

Adult female rats, undernourished at perinatal age, were evaluated for anxiolytic action in the plus-maze test after acute and chronic administration of diazepam (DZP) and pentobarbital (PTB). Deprived (D) rats chronically treated with vehicle showed an increased anxiety as compared with control (C) animals. A single intraperitoneal (i.p.) administration of DZP (1 mg/kg) or PTB (7.5 mg/kg) produced similar anticonflict effect in both C and D rats. Tolerance to the anxiolytic effect of DZP and PBT developed in C rats after a 15-day administration schedule, whereas no tolerance was observed in D animals. Drug disposition was not altered after chronic treatment either in C or in D rats. γ-aminobutyric acid (GABA)-mediated chloride uptake in microsacs of cerebral cortex of naive D rats was decreased as compared with naive C rats. After chronic DZP administration (1 mg/kg/day i.p. for 15 days), GABA-mediated 36Cl − influx in brain cortex microsacs of C rats did not change; however, GABA efficacy was increased in microsacs of D animals. In addition, chronic DZP treatment induced GABA-benzodiazepine uncoupling in brain cortex of C rats, but not in D animals, as assessed by chloride uptake in microsacs. Chronic PTB treatment (7.5 or 30 mg/kg/day i.p. for 15 days) did not modify GABA stimulation or GABA-PTB interaction in cortical microsacs of C or D rats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call