Abstract

Fibrosis around cardiac cell injections represents an obstacle to graft integration in cell-based cardiac repair. Thrombospondin-2 (TSP-2) is a pro-fibrotic, anti-angiogenic matricellular protein and an attractive target for therapeutic knockdown to improve cardiac graft integration and survival. We used a TSP-2 knockout (KO) mouse in conjunction with a fetal murine cardiomyocyte grafting model to evaluate the effects of a lack of TSP-2 on fibrosis, vascular density, and graft size in the heart. Two weeks after grafting in the uninjured heart, fibrosis area was reduced 4.5-fold in TSP-2 KO mice, and the thickness of the peri-graft scar capsule was reduced sevenfold compared to wild-type (WT). Endothelial cell density in the peri-graft region increased 2.5-fold in the absence of TSP-2, and cardiomyocyte graft size increased by 46% in TSP-2 KO hearts. TSP-2 is a key regulator of fibrosis and angiogenesis following cell grafting in the heart, and its absence promotes better graft integration, vascularization, and survival. Fibrosis around cardiac cell injections impairs graft integration in cell-based cardiac repair. TSP-2 is a pro-fibrotic, anti-angiogenic matricellular protein. Using a TSP-2-knockout mouse model and cardiac cell transplantation, we found significantly reduced fibrosis and increased endothelial cell density in the peri-graft region. Thus, TSP-2 is an attractive target for therapeutic knockdown to improve cardiac graft integration and survival.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.