Abstract

Protein tyrosine phosphatase non-receptor 22 (PTPN22) plays a central role in T cell, B cell and innate immune cell signalling. A genetic variation in Ptpn22 is considered a major risk factor for the development of type 1 diabetes and has been the subject of extensive study. While several reports have addressed how Ptpn22 might predispose to autoimmunity, its involvement in other immune-mediated diseases, such as allograft rejection, has not been explored. To address a possible function for Ptpn22 in allograft rejection, we used a mouse model of pancreatic islet transplantation. We performed transplant tolerance experiments and determined how PTPN22 shapes tolerance induction and maintenance. Ptpn22 (-/-) recipient mice generate higher numbers of alloreactive T cells after allogeneic pancreatic islet transplantation compared with wild-type (WT) mice, but reject grafts with similar kinetics. This is not only due to their well-documented increase in forkhead box protein P3 (FOXP3)(+) T regulatory (Treg) cells but also to the expansion of T regulatory type 1 (Tr1) cells caused by the lack of PTPN22. In addition, a tolerogenic treatment known to induce transplant tolerance in WT mice via Tr1 cell generation is more effective in Ptpn22 (-/-) mice as a consequence of boosting both Tr1 and FOXP3(+) Treg cells. A lack of PTPN22 strengthens transplant tolerance to pancreatic islets by expanding both FOXP3(+) Treg and Tr1 cells. These data suggest that targeting PTPN22 could serve to boost transplant tolerance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.