Abstract

The paper explains the relationship between the energy of hydrogen bonds and the distance between associated carboxyl groups of malonic acid (MA) molecules by means of infrared spectroscopic studies of crystals of its four isotopic varieties [CH2(COOH)2, h4-MA; CH2(COOD)2, d2c-MA; CD2(COOH)2, d2m-MA; CD2(COOD)2, d4-MA]. The effects associated with impact on the isotopic dilution and changes in the temperature of spectrum registration on the fine structures of the νO-H and νO-D bands were analyzed. MA molecular crystals are characterized by a tendency to spontaneous H/D isotopic exchange both within centrosymmetric hydrogen bond cycles and methylene groups. The mono- and polycrystalline spectra obtained in the infrared range of isotopically neat and isotopically diluted by deuterons do not indicate the occurrence of anomalous temperature evolution in the course of lowering their registration temperature to 77 K. Theoretical calculations did not give clear confirmation of the nature of the phenomena analyzed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call