Abstract

Absent, small, or homeotic discs 2 (Ash2), a histone H3K4 methyltransferase complex, has been implicated in the control of hyphal development and secondary metabolism in many kinds of filamentous fungi. We constructed an Ash2 deletion mutant (ΔAsh2) by using an Agrobacterium-mediated gene knockout method to investigate the function of the Ash2 gene in the mold Monascus purpureus. Lack of the Ash2 gene resulted in the formation of a lower colony phenotype with fluffy aerial hyphae that autolyzed as the colony grew on potato dextrose agar at 30°C. The production of pigments and the number of conidia were significantly lower in the ΔAsh2 than in the wild type. Citrinin production by the ΔAsh2 was not detected during 15 days of fermentation. Relative expression levels of secondary metabolite regulatory genes PigR and CTNR, secondary metabolite synthesizing genes PKSPT and CTN, key genes of mitogen-activated protein kinase pathway Spk1 and its downstream gene mam2, the conidium development control gene BrlA, and global regulatory genes LaeA and VeA were detected by the quantitative real-time PCR. These results indicate that the Ash2 gene is involved in conidial germination, pigment production, and citrinin production and plays a key role in development and secondary metabolism in M. purpureus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call