Abstract

The excited state intramolecular proton transfer (ESIPT) reactions and the fluorescence emission spectra of o-aminoaldehyde and o-aminoketone derivatives were systematically studied with density functional theory (DFT) and time-dependent density functional theory (TDDFT). The results suggest that the ESIPT process can be characterized as an ultra-fast process and that N-H vibration plays an important role in fluorescence emissions. The minimum energy pathways (MEP) on the excited states along the proton transfer coordinates (N-H vibration) were constructed for both o-aminoaldehyde and o-aminoketone derivatives, respectively, which showed a small barrier between the normal and tautomer (ESIPT) structures. By comparing the proton transfer barriers (Eb) and the N-H reorganization energies (λeleNH), we find that λeleNH is less than Eb in o-aminoketone derivatives, while λeleNH is greater than Eb in o-aminoaldehyde derivatives. It is clear that protons could move freely in o-aminoaldehyde derivatives, and thus only one normal emission band could be observed. Subsequently, the fluorescence emission spectra upon introduction of the N-H vibration effect can further confirm this mechanism, and the simulated spectra are in good agreement with the experimental observations, in which the o-aminoaldehyde derivatives have only one normal emission band while the o-aminoketone derivatives have two emission bands corresponding to the normal and tautomer structures. Consequently, this work can elucidate the lack of the ESIPT band in o-aminoaldehyde derivatives and also offer new insight into ESIPT by considering the vibronic effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.