Abstract
Transforming growth factor beta (TGFβ) is well-recognized as an immunosuppressive player in the tumor microenvironment but also has a significant impact on cancer cell phenotypes. Loss of TGFβ signaling impairs DNA repair competency, which is described by a transcriptomic score, βAlt. Cancers with high βAlt have more genomic damage and are more responsive to genotoxic therapy. The growing appreciation that cancer DNA repair deficits are important determinants of immune response prompted us to investigate the association of βAlt with response to immune checkpoint blockade (ICB). We predicted that high βAlt tumors would be infiltrated with lymphocytes because of DNA damage burden and hence responsive to ICB. We analyzed public transcriptomic data from clinical trials and preclinical models using transcriptomic signatures of TGFβ targets, DNA repair genes, tumor educated immune cells and interferon. A high βAlt, immune poor mammary tumor derived transplant model resistant to programmed death ligand 1 (PD-L1) antibodies was studied using multispectral flow cytometry to interrogate the immune system. Metastatic bladder patients in IMvigor 210 who responded to ICB had significantly increased βAlt scores and experienced significantly longer overall survival compared to those with low βAlt scores (hazard ratio 0.62, P=0.011) . Unexpectedly, 75% of high βAlt cancers were immune poor as defined by low expression of tumor educated immune cell and interferon signatures. The association of high βAlt with immune poor cancer was also evident in TCGA and preclinical cancer models. We used a high βAlt, immune poor cancer to test therapeutic strategies to overcome its inherent anti-PD-L1 resistance. Combination treatment with radiation and TGFβ inhibition were necessary for lymphocytic infiltration and activated NK cells were required for ICB response. Bioinformatic analysis identified high βAlt, immune poor B16 and CT26 preclinical models and paired biopsies of cancer patients that also demonstrated NK cell activation upon response to ICB. Our studies support βAlt as a biomarker that predicts response to ICB albeit in immune poor cancers, which has implications for the development of therapeutic strategies to increase the number of cancer patients who will benefit from immunotherapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.