Abstract

Mammalian cytosolic sulfotransferases (SULTs) frequently show substrate inhibition during the sulfation of increasing concentrations of substrates. SULT2A1, a major human liver isoform responsible for the conjugation of hydroxysteroids, bile acids and aliphatic hydroxyl groups in drugs and xenobiotics, is a homodimer and displays substrate inhibition during the conjugation of dehydroepiandrosterone (DHEA). Maltose binding protein (MBP)-SULT2A1 fusion protein, produced as an intermediate step in the purification of the SULT2A1 homodimer, elutes during size exclusion chromatography as a monomer. The initial-rate parameters (Km and Vmax) of the monomer (MBP-SULT2A1) and native SULT2A1 dimer for DHEA sulfation are extremely similar; however, the monomer is not inhibited by DHEA. Intrinsic fluorescence studies show that two DHEA molecules bind each SULT2A1 subunit, one in the catalytic site and one in an apparent allosteric site. Lack of dimerization in the MBP-SULT2A1 fusion protein decreased the Kd for binding of DHEA at the allosteric site. These results suggest that formation of the homodimer is associated with structural re-arrangements leading to increased DHEA binding at an allo-steric site that is associated with substrate inhibition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.