Abstract

In Escherichia coli wild-type cells newly formed origins cannot be reinitiated. The prevention of reinitiation is termed sequestration and is dependent on the hemimethylated state of newly replicated DNA. Several mutants discovered in a screen for the inability to sequester hemimethylated origins have been mapped to the seqA gene. Here, one of these mutants, seqA2, harbouring a single amino acid change in the C-terminal end of the SeqA protein, was found to also be unable to form foci in vivo. The SeqA foci seen in the wild-type cells are believed to arise from multimerization of SeqA on hemimethylated DNA at the replication fork, presumably representing organization of newly formed DNA by SeqA. The result suggests that the process of origin sequestration is closely tied to the process of focus maintenance at the replication fork. In vitro, purified SeqA2 protein was found incapable of forming highly ordered multimers that bind hemimethylated oriC. The mutant protein was also incapable of restraining negative supercoils. Both in vivo and in vitro results support the idea that origin sequestration is an integral part of organization of newly formed DNA performed by SeqA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call