Abstract

Purinergic signalling plays a major role in intercellular communication between neurons and glial cells. Glial cells express metabotropic receptors for ATP and adenosine, the latter being activated after ATP cleavage through extracellular ecto-ATPase activity. Ionotropic receptors for extracellular ATP, so called P2X receptors, might contribute to neuron-glia signalling. However, experimental evidence for the presence of these receptors in glial cells is less convincing so far. In a previous study, immunohistochemistry was used to identify P2X(1-4,6,7) receptor protein in S100beta-positive hippocampal glial cells. Applying patch clamp and fast application techniques, here we challenged the question of the functional expression of these receptors. Time correlated membrane currents served as test criterion for receptor function, since P2X receptor activation leads to the opening of unspecific cation channels in a millisecond time scale. Agonists were applied via short pressure puffs, with a fast concentration clamp method and through UV flash triggered photolysis of caged ATP. Two types of murine hippocampal macroglial cells, both labelled by the expression of green fluorescence protein driven by the human glial fibrillary acid protein promoter, were analysed in acute brain slices and in freshly dissociated cell suspensions. Surprisingly, ATP or related agonists completely failed to activate currents. Additionally, changes in spontaneously occurring glial postsynaptic currents were never observed. These results have been verified using rat and human hippocampal tissue as well as investigating cells from P2X7 knock out mice. It is concluded that in acute preparations, astroglial cells of the hippocampal CA1 subfield do not express functional P2X receptors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call