Abstract

Sir, Congenital nephrogenic diabetes insipidus (CNDI) is a rare disease characterized by the inability of the kidney to respond to arginine vasopressin (AVP). The absence of the neurohypophyseal ‘bright signal’ on T1 sequence magnetic resonance imaging (MRI) is considered as an argument in favour of the diagnosis of central diabetes insipidus (CDI). This observation is challenged as we hereby present a case of a child diagnosed with CNDI and who did not present MRI pituitary bright signal. A 6-month-old male presented with failure to thrive, polyuria and polydypsia. Family history revealed that the mother, 35 years of age, had been presenting polydypsia and polyuria, and she was investigated at the age of 6 years with no concluding diagnosis. The patient’s physical exam showed a weight of 5215 g (−3 DS) and clinical signs of dehydration. The patient’s plasma sodium level was 155 mmol/L, osmolality 305 mOsm/kg and urine osmolality 150 mOsm/kg. Brain MRI showed in T1 sequences the absence of the posterior pituitary bright signal suggesting the diagnosis of CDI (Figure 1). The child was treated with synthetic AVP analogue 1-desamino-8-d-arginine vasopressin (DDAVP) without improvement, which led to the consideration of CNDI. The diagnosis was confirmed by an elevated serum level of AVP of 214 pmol/L (reference value ≤4.34 pmol/L) and by genetic analysis demonstrating and T106C mutation in the V2R (X-linked CNDI). The child was treated with thiazide diuretic and increased fluids with restricted sodium intake. This resulted in catch-up growth and improved neurological development. A follow-up MRI was performed 6 months after the start of therapy with the same technique. At that time, the child’s weight had improved to 9310 g (−1.5 DS) corresponding to a gain of 22 g per day, and he did not present any clinical signs of dehydration and had a normal plasma level of sodium (140 mmol/L). MRI showed that the bright signal was still absent. Fig. 1 Sagittal T1 image shows absence of the posterior pituitary bright signal. Brain MRI was also performed on the child’s mother presenting the same gene mutation (R106C). As expected in CNDI, the posterior pituitary bright signal was present on T1 images (Figure 2). Fig. 2 Sagittal T1 image shows presence of the posterior pituitary bright signal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call