Abstract

There are two inhibitors of protein synthesis which are related to the activity of interferon. One is a protein kinase which phosphorylates the α subunit of the eucaryotic initiation factor 2 (eIF-2). The other is an enzyme which synthesizes an unusual oligonucleotide that in turn activates a RNA endonuclease. In nucleated cells the synthesis of the inhibitors is induced by interferon but they must be activated in a subsequent lysate by double-stranded RNA (dsRNA). Rabbit reticulocytes, however, contain the inactive forms of the inhibitors in a constitutive manner and require only dsRNA activation. We report here the effect of dsRNA on protein synthesis and the generation of ribosomal eIF-2α kinase and heat-stable (oligonucleotide) inhibitory activity in human reticulocyte lysates. Our findings indicate that human reticulocytes, in contrast to rabbit reticulocytes, do not contain the interferon-related inhibitors of protein synthesis in a constitutive manner. Addition of dsRNA to the human reticulocyte cell-free system does not result in significant inhibition. Furthermore, no generation of ribosomal eIF-2α kinase or heatstable inhibitory activity could be detected. Direct addition of oligonucleotide or eIF-2α kinase (of rabbit origin), however, does result in inhibition of the human system. Thus, the ultimate inhibition mechanisms do appear operative in the human reticulocyte lysates. The differences between the rabbit and human systems may be due to either basic differences in the mechanism of interferon action or simply to variation in the history or maturity of the cells studied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.