Abstract

The aim of this study was to evaluate the performance of consolidation-to-tumour ratio (CTR) and the radiomic models in two- and three-dimensional modalities for assessing radiological invasiveness in early-stage lung adenocarcinoma. A retrospective analysis was conducted on patients with early-stage lung adenocarcinoma from Guangdong Provincial People's Hospital and Shenzhen People's Hospital. Manual delineation of pulmonary nodules along the boundary was performed on cross-sectional images to extract radiomic features. Clinicopathological characteristics and radiomic signatures were identified in both cohorts. CTR and radiomic score for every patient were calculated. The performance of CTR and radiomic models were tested and validated in the respective cohorts. A total of 818 patients from Guangdong Provincial People's Hospital were included in the primary cohort, while 474 patients from Shenzhen People's Hospital constituted an independent validation cohort. Both CTR and radiomic score were identified as independent factors for predicting pathological invasiveness. CTR in two- and three-dimensional modalities exhibited comparable results with areas under the receiver operating characteristic curves and were demonstrated in the validation cohort (area under the curve: 0.807 vs 0.826, P = 0.059) Furthermore, both CTR in two- and three-dimensional modalities was able to stratify patients with significant relapse-free survival (P < 0.000 vs P < 0.000) and overall survival (P = 0.003 vs P = 0.001). The radiomic models in two- and three-dimensional modalities demonstrated favourable discrimination and calibration in independent cohorts (P = 0.189). Three-dimensional measurement provides no additional clinical benefit compared to two-dimensional.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call