Abstract

BackgroundAlzheimer’s disease (AD) is a devastating neurodegenerative disorder bearing multiple pathological hallmarks suggestive of complex cellular/molecular interplay during pathogenesis. Transgenic mice and nonhuman primates are used as disease models for mechanistic and translational research into AD; the extent to which these animal models recapitulate AD-type neuropathology is an issue of importance. Putative C-terminal fragments from sortilin, a member of the vacuolar protein sorting 10 protein (Vps10p) family, have recently been shown to deposit in the neuritic β-amyloid (Aβ) plaques in the human brain.MethodsWe set out to explore if extracellular sortilin neuropathology exists in AD-related transgenic mice and nonhuman primates. Brains from different transgenic strains and ages developed overt cerebral Aβ deposition, including the β-amyloid precursor protein and presenilin 1 double-transgenic (APP/PS1) mice at ~ 14 months of age, the five familial Alzheimer’s disease mutations transgenic (5×FAD) mice at ~ 8 months, the triple-transgenic Alzheimer’s disease (3×Tg-AD) mice at ~ 22 months, and aged monkeys (Macaca mulatta and Macaca fascicularis) were examined. Brain samples from young transgenic mice, middle-aged/aged monkeys, and AD humans were used as negative and positive pathological controls.ResultsThe C-terminal sortilin antibody, which labeled senile plaques in the AD human cerebral sections, did not display extracellular immunolabeling in the transgenic mouse or aged monkey brain sections with Aβ deposition. In Western blot analysis, sortilin fragments ~ 15 kDa were not detectable in transgenic mouse cortical lysates, but they occurred in control AD lysates.ConclusionsIn reference to their human brain counterparts, neuritic plaques seen in transgenic AD model mouse brains represent an incomplete form of this AD pathological hallmark. The species difference in neuritic plaque constituents also indicates more complex secondary proteopathies in the human brain relative to rodents and nonhuman primates during aging and in AD.

Highlights

  • Alzheimer’s disease (AD) is a devastating neurodegenerative disorder bearing multiple pathological hallmarks suggestive of complex cellular/molecular interplay during pathogenesis

  • Many transgenic mouse lines are produced as animal models of Alzheimer’s disease (AD), with the majority being engineered to overexpress mutant β-amyloid precursor protein (APP) and/or presenilin 1 or 2 (PS1, PS2) genes identified from patients with early-onset familial AD (FAD) [1,2,3]

  • We report only data derived from the labeling of the sortilin C-terminal antibody in this report, given that this antibody labels the plaque-like lesions, in addition to the cellular profiles that are equivalently marked by the goat antibody

Read more

Summary

Introduction

Alzheimer’s disease (AD) is a devastating neurodegenerative disorder bearing multiple pathological hallmarks suggestive of complex cellular/molecular interplay during pathogenesis. Though in many cases excellent pharmacological efficacy is established in preclinical experiments with transgenic AD models, no effective medicine has been translated to patients to date, owing to repeated failure at various stages of clinical drug trails. This has led to discussions on the extent to which the transgenic models have sufficiently recapitulated the complexity of human AD pathology [13,14,15,16,17]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call