Abstract

Double-stranded RNA (dsRNA) induces sequence-specific mRNA degradation in most eukaryotic organisms via a conserved pathway known as RNA interference (RNAi). Post-transcriptional gene silencing by RNAi is also connected with transcriptional silencing of cognate sequences. In plants, this transcriptional silencing is associated with sequence-specific DNA methylation. To address whether this mechanism operates in mammalian cells, we used bisulfite sequencing to analyze DNA in mouse oocytes constitutively expressing long dsRNA against the Mos gene. Our data show that long dsRNA induces efficient Mos mRNA knockdown but not CpG and non-CpG DNA methylation of the endogenous Mos sequence in oocytes and early embryos. These data demonstrate that dsRNA does not directly induce DNA methylation in the trans form of this sequence in these mammalian cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call