Abstract

Double-stranded RNA (dsRNA) induces sequence-specific mRNA degradation in most eukaryotic organisms via a conserved pathway known as RNA interference (RNAi). Post-transcriptional gene silencing by RNAi is also connected with transcriptional silencing of cognate sequences. In plants, this transcriptional silencing is associated with sequence-specific DNA methylation. To address whether this mechanism operates in mammalian cells, we used bisulfite sequencing to analyze DNA in mouse oocytes constitutively expressing long dsRNA against the Mos gene. Our data show that long dsRNA induces efficient Mos mRNA knockdown but not CpG and non-CpG DNA methylation of the endogenous Mos sequence in oocytes and early embryos. These data demonstrate that dsRNA does not directly induce DNA methylation in the trans form of this sequence in these mammalian cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.