Abstract

Pancreas disease (PD) is an important cause of losses in farmed salmonids in Norway, the United Kingdom and Ireland. As the spread of salmonid alphavirus (SAV), the causal agent, to naïve populations is of major concern to the farming industry, it is important to uncover the transmission routes of the virus. This study was conducted to investigate the potential for vertical transmission of SAV subtype 3. Progeny of broodstock with signs of late-stage PD and persistent RT-PCR signals for SAV were followed from fertilization to smoltification in an experimental facility. Fertilized ova were either not disinfected or taken through one of three different disinfection regimes. Also, ova and milt from uninfected broodfish from a different population were exposed to a cell-cultured strain of SAV 3 immediately before fertilization to simulate a viraemic phase in parent fish. A group of uninfected controls were also included in the study. Fertilized ova from bath exposed and negative control groups were double disinfected. Following fertilization, experimental fish went through a normal freshwater phase. However, fry were stressed at first feeding to enhance replication of possibly latent virus. Smoltification was induced by an artificial light regime, and experimental fish were followed to the late smoltification phase. Selected samples were investigated by real-time RT-PCR for SAV, by histology for evidence of PD and by serology for neutralising antibodies against SAV. All analysed samples of progeny were negative. This result shows that SAV 3 is not readily transmitted vertically from parents to offspring. Additional negative PCR results from salmon sampled in commercial hatcheries support these findings. Also, recent studies have shown that risk factors for the horizontal transmission route explain the vast majority of PD outbreaks in Norway. It is concluded that if it happens at all, vertical transmission is of minor importance in the spread of SAV 3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.