Abstract

Breast cancer is one of the most frequent cancers in the population, especially in older women. Estrogen is known to be a key hormone in the development and progression of mammary carcinogenesis. In this study, we investigated if the procarcinogenic effect of 17β-estradiol (E2) in breast cancer MCF-7 cells is dependent on changes in glucose or folic acid cellular uptake. The effect of E2 on uptake of 3H-deoxy-d-glucose, 3H-folic acid, cell proliferation (3-thymidine incorporation assay), culture growth (sulforhodamine B assay), viability (lactate dehydrogenase activity assay), lactate production and migration capacity (injury assay) was evaluated. E2 (48h; 100nM) increased culture growth (16%), proliferation rate (24%), cellular viability (36%) and lactate production (38%). In contrast, E2 did not significantly affect the migration capacity of MCF-7 cells. The pro-proliferative, but not the cytoprotective effect of E2 was found to be ERβ-dependent. The polyphenols rutin and caffeic acid were not able to counteract the effect of E2 upon cell proliferation and viability. Uptake of 3H-deoxy-d-glucose was not affected by E2, either in the absence or presence of GLUT inhibitors (cytochalasin B plus phloridzin). Moreover, E2 did not change GLUT1 mRNA levels. Finally, 3H-folic acid uptake was also not affected by E2, both in the absence and presence of the RFC1 inhibitor, methotrexate. The pro-proliferative and cytoprotective effects of E2 are not dependent neither of stimulation of glucose cellular uptake (both GLUT and non-GLUT-mediated) nor of stimulation of folic acid uptake (both RFC1-and non-RFC1-mediated).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call