Abstract

The object of this study is to investigate the relationship between a typical product of oxidative DNA damage, 8‐hydroxy‐2′‐deoxyguanosine (8OHdG), and mutagenesis in V79 cells through a molecular analysis of hypoxanthine‐guanine phosphoribosyltransferase (hprt) gene mutants. We performed a direct sequencing analysis of the cDNA of mutants obtained after treatment with N,N'‐bis(2‐hydroxyperoxy‐2‐methoxyethyl)‐l,4,5,8‐naphthalenetetracarboxylic‐diimide (NP‐III) or riboflavin, each of which induces the formation of 8OHdG in cellular DNA upon UVA irradiation. The frequency of mutation after both treatments was no more than 2 to 5 times the control value. A considerable number of the mutants could not be amplified by RT‐PCR, and this was also the case for the control mutants. Among the mutants analyzed, deletions and a TA→Ã transversion occurred predominantly. The reasons for the weak association of induction of 8OHdG with frequency of mutation and the possible mechanism of oxidative‐stress‐derived mutagenesis are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.