Abstract

The extent of genetic degeneration of the neo-Y chromosome of Drosophila americana americana has been investigated. Three loci, coding for the enzymes enolase, phosphoglycerate kinase and alcohol dehydrogenase, have been localized to chromosome 4 of D. a. americana, which forms the neo-Y and neo-X chromosomes. Crosses between D.a. americana and D. virilis or D. montana showed that the loci coding for these enzymes carry active alleles on the neo-Y chromosome in all wild-derived strains of americana that were tested. Intercrosses between a genetically marked stock of virilis and strains of americana were carried out, creating F3 males that were homozygous for sections of the neo-Y chromosome. The sex ratios in the F3 generation of the intercrosses showed that no lethal alleles have accumulated on any of the neo-Y chromosomes tested. There was evidence for more minor reductions in fitness, but this seems to be mainly caused by deleterious alleles that are specific to each strain. A similar picture was provided by examination of the segregation ratios of two marker genes among the F3 progeny. Overall, the data suggest that the neo-Y chromosome has undergone very little degeneration, certainly not to the extent of having lost the functions of vital genes. This is consistent with the recent origin of the neo-Y and neo-X chromosomes, and the slow rates at which the forces that cause Y chromosome degeneration are likely to work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.