Abstract

D-type cyclins, in association with the cyclin-dependent kinases Cdk4 or Cdk6, regulate events in the G1 phase of the cell cycle and may contribute to the phosphorylation of the retinoblastoma gene product (Rb). However, in cells in which the function of Rb has been compromised, either by naturally arising mutations or through binding to proteins encoded by DNA tumour viruses, Cdk4 and Cdk6 are not associated with D cyclins. Instead, both kinases form binary complexes with a stable 16 kDa protein (p16) encoded by the putative tumour suppressor gene INK4/MTS1 on human chromosome 9p21. Here we show an inverse correlation between Rb status and the expression of p16. Since Rb-negative cells express high levels of p16, we suggest that in these cells p16 competes with D cyclins for binding to Cdk4 and Cdk6 and prevents formation of active complexes. In line with these predictions, DNA tumour virus oncoproteins do not disrupt cyclin D1-Cdk4 complexes in cells lacking p16.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.