Abstract
Background A number of studies have shown that the nitric oxide (NO)/cGMP signalling pathway plays a major role in neuronal cell differentiation and in the central nervous system during development, but much less is known about the expression and regulation of the different subunits of NO sensitive guanylyl cyclase (sGC) in the developing brain. In the present study, we have analysed the regulation and expression of sGC in brain of rats during postnatal development using biochemical methods.
Highlights
A number of studies have shown that the nitric oxide (NO)/cGMP signalling pathway plays a major role in neuronal cell differentiation and in the central nervous system during development, but much less is known about the expression and regulation of the different subunits of NO sensitive guanylyl cyclase in the developing brain
Experiments in brain show a decrease in α1 expression and an increase in α2 expression in cerebellum of adult rats compared to neonatal rats
Enzyme activity in cerebellum shows a significant increase in NO stimulated sensitive guanylyl cyclase (sGC) activity from adult animals compared to neonatal rats
Summary
A number of studies have shown that the nitric oxide (NO)/cGMP signalling pathway plays a major role in neuronal cell differentiation and in the central nervous system during development, but much less is known about the expression and regulation of the different subunits of NO sensitive guanylyl cyclase (sGC) in the developing brain. We have analysed the regulation and expression of sGC in brain of rats during postnatal development using biochemical methods. NO stimulated sGC activity decreased significantly in cerebrum from adult as compared to neonatal animals. To examine sGC subunit heterodimerization, we performed immunoprecipitation experiments. These experiments show that there is partial failure of sGC subunits to heterodimerize in adult cerebrum but not in neonatal cerebrum. This explains the surprising decrease of sGC activity in adult cerebrum in spite of stable or increased expression of the sGC subunits
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.