Abstract

In the adult kidney, renin-producing cells are typically located in the walls of afferent arterioles at the transition into the glomerular capillary network. The mechanisms that are responsible for restricting renin expression to the juxtaglomerular position are largely unknown. This study showed that in mice that lack connexin 40 (Cx40), the predominant connexin of renin-producing cells, renin-positive cells are absent in the vessel walls and instead are found in cells of the extraglomerular mesangium, glomerular tuft, and periglomerular interstitium. Blocking macula densa transport function by acute administration of loop diuretics strongly enhances renin secretion in vivo and in isolated perfused kidneys of wild-type mice. This effect of loop diuretics is markedly attenuated in vivo and even blunted in vitro in Cx40-deficient mice. Even after prolonged stimulation of renin secretion by severe sodium depletion, renin expression is not seen in juxtaglomerular cells or in cells of more proximal parts of the arterial vessel wall as occurs normally. Instead, renin remains restricted to the extra-/periglomerular interstitium in Cx40-deficient mice. In contrast to the striking displacement of renin-expressing cells in the adult kidney, renin expression in the vessels of the developing kidney was found to be normal. This is the first evidence to indicate that cell-to-cell communication via gap junctions is essential for the correct juxtaglomerular positioning and recruitment of renin-producing cells. Moreover, these findings support the notion that gap junctions are relevant for the macula densa signaling to renin-producing cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call