Abstract

The present study was undertaken to examine the role of heat shock response in the development of tolerance and cross-tolerance in an in vivo murine model of teratogen-induced neural tube defects. The experimental paradigm designed to address this question was to utilize inbred mouse strains that differed in their sensitivity to hyperthermia and valproic acid induced neural tube defects, subjecting the dams to subteratogenic pretreatments with either heat or valproic acid at two different timepoints during development prior to the administration of the teratogenic insult. A statistically significant reduction in the frequency of neural tube defects and/or embryolethality following a pretreatment in dams subsequently exposed to a teratogenic treatment was considered evidence for the induction of tolerance. This was observed in the SWV embryos exposed to the 38 degrees C pretreatment at 8:06 and to embryos exposed to either pretreatment temperature at 8:10 prior to a teratogenic heat shock at 8:12. In the LM/Bc embryos, only the 41 degrees C pretreatment at 8:06 induced thermotolerance. There was no evidence of tolerance induced in either mouse strain using valproic acid. On the other hand, cross-tolerance was clearly demonstrated in this study, with a low temperature (41 degrees C) pretreatment successfully protecting SWV fetuses from a subsequent teratogenic treatment with valproic acid, while valproic acid (200 mg/kg) was effective in reducing the risk of hyperthermia-induced neural tube defects in the LM/Bc fetuses. In all instances, tolerance was induced in the absence of significant induction of hsp synthesis. The lack of concordance between hsps and thermotolerance suggests that some other factor(s) is involved in conferring thermotolerance on developing murine embryos.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.