Abstract

It has been proposed that extremely low frequency (ELF) magnetic fields may enhance tumorigenesis through a co-promotional mechanism. This hypothesis has been further tested using the two-stage model of mouse skin carcinogenesis, i.e. 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced promotion of skin tumors in mice initiated by a single subcarcinogenic dose of 7,12-dimethylbenz[a]anthracene. Experimentation described herein utilized the SENCAR mouse and examined the effect of a magnetic field on skin tumor promotion induced by three different doses of TPA within its dose-response range, i.e. 0.85, 1.70 or 3.40 nmol, administered twice per week. SENCAR mice (56/treatment group) were exposed to a 60 Hz magnetic field having a flux density of 2 mT for 6 h/day for 5 days/week and compared with mice exposed to the ambient magnetic field. Tumor incidence and multiplicity were monitored weekly for 23 weeks of TPA promotion. Statistical evaluation of the effects of the magnetic field on tumor incidence and multiplicity did not reveal any statistically significant effects; thus, within the sensitivity limits imposed by the animal model and the exposure parameters employed, no promotional or co-promotional effect of a 2 mT magnetic field on skin tumor development in SENCAR mice could be demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.