Abstract

In this study, (1→3)(1→6)-β-D-glucan (botryosphaeran) from Botryosphaeria rhodina MAMB-05 was used, for the first time, to immobilize laccase on a carbon black paste electrode modified with gold nanoparticles. The physicochemical characterization of the proposed laccase-biosensor was performed using transmission electron microscopy and electrochemical impedance spectroscopy. The performance of this novel bio-device was evaluated by choosing hydroquinone as a typical model of a phenolic compound. For hydroquinone determination, experimental variables such as enzyme concentration, pH and operational parameters of the electroanalytical technique were optimized. From square-wave voltammograms, a linear dependence between the cathodic current peak and the hydroquinone concentration was observed within the range 2.00–56.5μmolL−1, with a theoretical detection limit of 0.474μmolL−1. The proposed method was successfully applied to determine hydroquinone in dermatological cream, and samples from biological and environmental niches. The proposed biosensor device presented good selectivity in the presence of uric acid, various inorganic ions, as well as other phenolic compounds, demonstrating the potential application of this biosensing platform in complex matrices. Operational and analytical stability of the laccase biosensor were evaluated, and demonstrated good intra-day (SD=0.3%) and inter-day (SD=3.4%) repeatability and long storage stability (SD=4.9%).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.