Abstract
An expanding number of human activities are contributing to the rising levels of aromatic compounds, which pose a major threat to the ecosystem. However, readily available microbial enzymes might be used to remediate contaminated wastewater in an economical and environmentally benign manner. In this study, an efficient method of laccase-oriented immobilization on modified Immobead 150P was proposed. The oriented immobilization technique using aminated laccase exceeds in both protein loading onto the carrier (4.26 mg/g) and immobilization yield (93.57%) due to the availability of more active sites. The oriented aminated laccase preserves 100% and 95% of its original activity after six and ten cycles of operation, respectively. The thermal stability performance of the oriented enzyme was the best among both free and random immobilized forms, since it was able to conserve 79% and 44% of its initial activity after 6 h at 50 °C and 60 °C, respectively. The ideal pH of oriented immobilized laccase was altered from 3.0 to 4.0, and it was more stable than both free and random immobilized laccases at pH 7.0. Finally, the integration of the adsorption capacity of Immobead 150P and the biodegradation ability of laccase promises the efficient removal of aqueous phenolics. Oriented immobilized laccase may provide a significant new approach for wastewater treatment, according to these findings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.