Abstract

The multicopper oxidase Trametes hirsuta laccase (ThLc) served as a bioelectrocatalyst on nanostructured cathodes. Nanostructuring was provided by gold nanorods (AuNRs), which were characterized and covalently attached to electrodes made of low-density graphite. The nanostructured electrode was the scaffold for covalent and oriented attachment of ThLc. The bioelectrocatalytic currents measured for oxygen reduction were as high as 0.5mA/cm2 and 0.7mA/cm2, which were recorded under direct and mediated electron transfer regimes, respectively. The experimental data were fitted to mathematical models showing that when the O2 is bioelectroreduced at high rotation speed of the electrode the heterogeneous electron transfer step is the rate-liming stage. The electrochemical measurement hints a wider population of non-optimally wired laccases than previously reported for 5–8nm size Au nanoparticle-modified electrode, which could be due to a larger size of the AuNRs when compared to the laccases as well as their different crystal facets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.