Abstract

The detrimental growth of water pollutants such as heavy metals has become a life-threatening problem in the modern era. Challenges remain in the development of rapid and accurate methods for detecting pentavalent arsenic [As(V)] in environmental water. The octahedral Mn3O4 nanoparticles (NPs) did not display excellent laccase-mimicking catalytic activity, whereas the adsorbed As(V) on the surface significantly enhanced the catalytic activity. Meanwhile, the quinone imine generated from the substrates 2,4-dichlorophenol (2,4-DP) and 4-aminoantipyrine (4-AAP) catalyzed by octahedral Mn3O4 NPs further quenched the carbon dots fluorescence. Thus, it is possible to establish a fast and accurate dual-mode sensor for detecting As(V). The developed dual-mode method of As(V) detection has good sensitivity and selectivity. The limit of detection for As(V) in colorimetric mode is 6.96 μg·L−1, whereas in the fluorescent mode, it is as low as 2.56 μg·L−1. Moreover, the detection data obtained by the dual-mode method can be validated by each other, thereby ensuring the dependability of the sensing system. The constructed dual-mode method with merits of sensitivity, speed and accuracy can offer a powerful tool for As(V) detection in environmental water. Furthermore, the application of laccase-mimicking activity in dual-mode detection provides new strategies for other environmental hazard detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.