Abstract
ABSTRACTLaccase enzymes from Rhus vernificera were covalently bound on hyperbranched polyethyleneimine/polyethersulfone (HPEI/PES) electrospun nanofibrous membranes and used for the removal of bisphenol A (BPA) from water. The laccase enzyme was anchored on the dendritic membranes through the abundant peripheral amine groups on the HPEI using glutaraldehyde as a crosslinker. The membranes were characterized with attenuated total reflectance-Fourier transform infrared spectroscopy, scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDS) and ultraviolet–visible spectroscopy and correlative light and electron microscopy (CLEM). Furthermore, contact-angle analyses, pure water flux measurements and rejection analyses were carried out. CLEM showed that the enzymes were uniformly dispersed on the nanofibres while SEM analysis revealed that the nanofibres had an average diameter of 354 ± 37 nm. EDS showed the presence of Cu, which is the active entity in laccase enzymes. The laccase-modified membranes were hydrophilic (50°–53° contact angle) and exhibited high BPA rejection of 89.6% as compared to the 52.4% demonstrated by pristine PES. The laccase-modified membranes also maintained a constant permeate flux (7.07 ± 5.54 L/m2 h) throughout the filtration process. Recyclability studies indicated that the membranes still maintained a high BPA removal of up to 79% even after four filtration cycles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.