Abstract

Three types of improved Fe3O4 magnetic nanoparticles (MNPs), including poly(amidoisophthalicacid) coated magnetite nanoparticles (Fe@PA), cyclodextrin (CD) anchored Fe@PA (Fe@PA-CD), and chitosan (Cs) coated Fe@PA-CD (Fe@PACD-Cs) were successfully developed and characterized. Laccase immobilization onto MNPs was carried out via physical adsorption. The maximal and minimal loading capacity were obtained for Fe@PA and Fe@PA-CD-Cs, respectively. Fe@PA-CDCs-laccase exhibited around 100% of the maximum activity at pH 4 and maintained 70% of its initial activity within the temperature range of 15–55 °C; and Cs coated nanoparticles were more efficient than non-coated. Fe@PA-CD-Cs-laccase maintained 70% of its initial activity up to 12 d from the first day of storage at 25 °C whereas the free laccase, Fe@PA-laccase, and Fe@PA-CD-laccase kept 10%, 28%, and 33% of initial activity, respectively. Furthermore, bio-removal of phenolic compounds was performed by the free and immobilized enzyme. Fe@PA-CD-Cs-laccase showed maximal removal with 96.4% and 85.5% for phenol and bisphenol A, respectively. It seems that Fe@PA-CD-Cs could be an appropriate support for immobilization of other enzymes in various industrial application especially bioremoval of phenolic compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.