Abstract

The potential use of laccase (SP-504) in an advanced oxidation-based treatment technology to remove 2,4-dimethylphenol (DMP) from water was investigated with and without the additive, polyethylene glycol (PEG). The DMP concentration was varied between 1.0 and 5.0 mM. The optimization of pH and enzyme concentration in the presence and absence of PEG was carried out. All experiments were carried out in continuously stirred reactors for 3 h at room temperature. The reaction was initiated by adding enzyme to the reaction mixture. For more than 95% removal of DMP, the presence of PEG reduced the inactivation of enzyme so that the required enzyme concentrations were reduced by about 2-fold compared to the same reactions in the absence of PEG. Finally, the PEG concentrations were optimized to obtain the minimum dose required. For higher substrate concentrations, the availability of oxygen was insufficient in achieving 95% or more removal. Therefore, the effect of increasing dissolved oxygen at higher substrate concentration was investigated. The laccase studied was capable of efficiently removing DMP at very low enzyme concentrations and hence shows great potential for cost-effective industrial applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call