Abstract
A biosensor was developed by immobilizing laccase onto mercury thin film electrode (MTFE) by means of gelatin that is then crosslinked with glutaraldehyde. Mercury thin film (MTF) was deposited onto glassy carbon electrode (GCE) and the obtained biosensor was utilized for the determination of phenolic compounds. The measurement was based on the amperometric detection of oxygen consumption in relation to analyte oxidation. The optimum experimental conditions for the biosensor were investigated and the system was calibrated for both catechol and phenol. A linear relationship between sensor responses and analyte concentrations was obtained in concentration range between 0.5 x 10(-6)-5.0 x 10(-6)M for catechol and 2.5 x 10(-6)-2.0 x 10(-6)M for phenol, respectively. Mercury thin film was also formed onto the surface of screen printed graphite electrodes and applied for the catechol detection. The linearity was observed in concentration range between 2.5 x 10(-6)-3.0 x 10(-5)M.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Artificial Cells, Blood Substitutes, and Biotechnology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.