Abstract

A novel nanomaterial composed of copper and carbon nanofibers (CuCNFs) decorated with Ag-doped TiO2(Ag–TiO[Formula: see text] nanoparticles was prepared through electrospinning, carbonization and solvothermal treatment. The composites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and electrochemical impedance spectroscopy (EIS). The obtained composites were mixed with laccase and Nafion to construct novel hydroquinone biosensor. The electrochemical behavior of the novel biosensor was studied using cyclic voltammetry (CV) and chronoamperometry. The results demonstrated that the biosensor possessed a wide detection linear range (1.20–176.50[Formula: see text][Formula: see text]M), a good selectivity, repeatability, reproducibility and storage stability. This work provides a new material to design more efficient laccase (Lac) based biosensor for hydroquinone detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.