Abstract
Abstract As an important preceding step for the demonstration of an uncharacteristic (q-deformed) statisticalmechanical structure in the dynamics of the Feigenbaum attractor we uncover previously unknown properties of the family of periodic superstable cycles in unimodal maps. Amongst the main novel properties are the following: i) The basins of attraction for the phases of the cycles develop fractal boundaries of increasing complexity as the period-doubling structure advances towards the transition to chaos. ii) The fractal boundaries, formed by the pre-images of the repellor, display hierarchical structures organized according to exponential clusterings that manifest in the dynamics as sensitivity to the final state and transient chaos. iii) There is a functional composition renormalization group (RG) fixed-point map associated with the family of supercycles. iv) This map is given in closed form by the same kind of q-exponential function found for both the pitchfork and tangent bifurcation attractors. v) There is final-stage ultra-fast dynamics towards the attractor, with a sensitivity to initial conditions which decreases as an exponential of an exponential of time. We discuss the relevance of these properties to the comprehension of the discrete scale-invariance features, and to the identification of the statistical-mechanical framework present at the period-doubling transition to chaos. This is the first of three studies (the other two are quoted in the text) which together lead to a definite conclusion about the applicability of q-statistics to the dynamics associated to the Feigenbaum attractor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.