Abstract

Volatile organic compounds (VOCs) are one of the top five atmospheric pollutants, and, according to an EC directive, are defined as “all organic compounds arising from human activities, other than methane, which are capable of producing photochemical oxidants by reactions with nitrogen oxides in the presence of sunlight” (Council Directive 2001/81/EC). This definition highlights the fact that VOCs play a vital role in the formation of tropospheric ozone, which causes photochemical smog. Short-term exposure to photochemical smog affects respiratory function and has adverse effects on plants (World Health Organization, 2004). The distinction between biogenic and anthropogenic VOCs in the atmosphere is far from straightforward, because many VOC species are produced by both sources (Popescu & Ionel, 2010). Anthropogenic sources of VOCs include air emissions from wastewater treatments plants, motor vehicles, gasoline storage facilities and transportation, dry cleaning and other industrial sources (D.J. Kim & H. Kim, 2005). In this sense, the main sectors involved in non-methane VOC emissions in the EU-27 are solvent and product use (41%), road and non-road transportation (18%), and commercial, institutional, and household associated emissions (14%) (European Environment Agency, 2010). Regarding the industrial sources, Fig. 1 illustrates the contributions from various industrial sectors to EU-27 nonmethane VOC industrial emissions in 2008 (European Pollutant Release and Transfer Register, 2008). The three most important industrial sources are: energy (41%); the chemical industry (22%); and coating and surface treatment activities (18%). In fact, over the past decade, emerging European Union environmental policy has focused on abatement of VOCs from industrial emissions, in an effort to protect environmental and public health. As a result of these initiatives, new European VOC emission limits have been established in the VOC Solvent Emissions Directive (Council Directive 1999/12/EC) for a wide range of industrial sectors. Currently, VOC concentration limits range from 50 to 150 mg C/Nm3, depending on the application and solvent consumption. Although process changes and the substitution of solvent-based products for water-based ones have the potential to minimise VOC emissions, stringent VOC emission limits require

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.