Abstract

We report laboratory measurements of electrical resistivity ρ, water permeability k, and compressional wave velocity [Formula: see text] for both intact and fractured Berea sandstone samples as functions of temperature from 20°C to 200°C and effective pressure [Formula: see text] from 2.5 MPa to 50 MPa. For the intact sample, [Formula: see text] increases from 3.52 km/s to 4.16 km/s as [Formula: see text] goes from 3 to 50 MPa. With increasing temperature, [Formula: see text] decreases at rates of about 3 percent per 100°C at [Formula: see text] of 5 MPa and about 1.5 percent per 100°C at [Formula: see text] of 38 MPa. Data from the fractured sample are qualitatively similar, but velocities are about 10 percent lower. For both intact and fractured samples, ρ increases less than 15 percent as [Formula: see text] increases from 2.5 MPa to 50 MPa. Although both samples show a larger decrease in resistivity with increasing temperature, most of this change is attributed to the decrease in resistivity of the pore fluid over that temperature range. For both samples, k decreases with increasing pressure and temperature. The intact sample permeability varies from 23 mD at 3 MPa and 20°C to less than 1 mD at 50 MPa and 150°C. The permeability of the fractured sample varies from 676 mD at 3 MPa and 20°C to less than 1 mD at 40 MPa and 190°C. The effect of the fracture on k vanishes after several pressure cycles and above about 100°C. These laboratory data are used to demonstrate the possibility of using resistivity and velocity measurements to estimate in‐situ permeability of a reservoir.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.