Abstract

The velocity and the attenuation of compressional P‐waves, measured in the laboratory at ultrasonic frequencies during a series of freezing and thawing cycles, are used as a method for predicting frost damage in a bedded limestone. Pulse transmission and spectral ratio techniques are used to determine the P‐wave velocities and the attenuation values relative to an aluminum reference sample with very low attenuation. Limestone samples were water saturated under vacuum conditions, jacketed with rubber sleeves, and immersed in an antifreeze bath (50 percent methanol solution). They were submitted to repeated 24-hour freezing and thawing cycles simulating natural environment conditions. During the freeze/thaw cycles, P‐wave velocities and quality factor Q diminished rapidly in thawed rock samples, indicating modification of the pore space. Measurements of crack porosity were conducted by hydrostatic compression tests on cubic rock samples that had been submitted to these freeze/thaw cycles. These measurements are used as an index of crack formation. The hydrostatic compression tests confirmed the phases of rock damage that were shown by changes in the value of Q. Furthermore, comparisons between Q values and crack porosity demonstrated that the variations of P‐wave attenuation are caused by the creation of new cracks and not by the enlargement of pre‐existing cracks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.