Abstract

Abstract Because of its high strength and durability, basalt fiber reinforced polymer (BFRP) rebar is a promising alternative to the steel counterpart in reinforced concrete. Using BFRP rebar in continuously reinforced concrete pavement (CRCP) allows one to avoid the rusting of traditional steel bars caused by water that infiltrates through cracks. A sufficient bond between BFRP rebar and concrete is critical in order to apply BFRP rebar in CRCP. This paper investigates the effects of different ribs and anchorage lengths on the bond performance of BFRP rebar and concrete through a series of pull-out tests. The finite element method (FEM) is utilized to simulate the bond between BFRP rebar and concrete. The pull-out test results indicate that the bond strength changes with rib depth and rib spacing. The highest bond strength can be achieved when the rib depth is 10 % of the diameter of the BFRP rebar and the rib spacing is 80 % of the diameter. The bond strength of BFRP rebar with an anchorage length of 10 times the diameter is greater than that of BFRP rebar with an anchorage length of 5 times the diameter. The developed FEM models could provide the same bond-sliding relationship as the results of pull-out tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.