Abstract
Coastal dikes are commonly engineered to safeguard coastal areas from various coastal hazards. When incoming waves interact with these coastal dikes, wave overtopping frequently occurs if the storm wave's runup exceeds the dike's freeboard. This wave overtopping can lead to natural disasters, such as coastal flooding and damage to the protective layers of the dikes. Consequently, extensive research has been conducted on this phenomenon, assuming the absence of vegetation, as documented in EurOtop (2018). However, in many tidal flat regions, like the Yangtze River Delta, vegetation is prevalent and forms a vegetated foreshore alongside coastal dikes. It is widely acknowledged that a vegetated foreshore not only dissipates waves more effectively than a natural beach, as demonstrated in studies by Suzuki et al. (2019), but also reduces flow velocities, resulting in sediment accumulation over the vegetated area, as observed in research by Chen et al. (2012) and Hu et al. (2018). While increased wave dissipation due to vegetation may lead to reduced wave overtopping, there is currently limited research available that addresses the influence of vegetation on wave overtopping across coastal dikes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: CoastLab 2024: Physical Modelling in Coastal Engineering and Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.