Abstract

In this paper, the stability of large-size graded crushed stone used for road base or cushioning under repeated load is investigated. Using an in-house developed device, large-size crushed stone mix was compacted and molded by the vibration and rotary compaction method. Cyclic rotating axial compression was applied, and the shakedown theory was used to study the cumulative deformation of the large-size crushed stone specimens. The effects of gradation parameters on the cumulative strain and stability behavior were analyzed, and the critical stability and failure loads were determined according to the shakedown theory. The test results indicate that there are three obvious instability behavior stages of large-size graded crushed stone under cyclic rotating axial compression: elastic stability, plastic creep, and incremental plastic failure. Large-size graded crushed stone has a higher critical stability load stiffness than conventional-size graded crushed stone. The critical shakedown load of the specimen is mainly affected by the skeleton structure performance, and the critical failure load by the properties of the crushed stone material. Increasing the content and compactness of large-size crushed stone in the specimen can improve the stiffness and stability performance, and to achieve improvements, the content of large-size crushed stone should be controlled between 22% and 26%. The critical shakedown load increases with the increase in the California bearing ratio (CBR) value, while, on the other hand, the CBR value has little relationship with the critical failure load.

Highlights

  • Large-size graded crushed stone, which is a typical elastic–plastic granular material [1,2,3,4,5,6], finds its applications as road base, highway cushion, and as airstrips

  • In this paper, adopting the rotation compression used in the design method of asphalt mixtures such as Superpave, cyclic rotating axial compression tests were conducted to study the deformations of the large-sized graded crushed stone under cyclic loading using a novel testing device developed in-house to achieve the simultaneous action of axial pressure and shear stress

  • The deformation behavior of large-size graded crushed stone was tested under the simultaneous action of axial pressure and shear stress using the road material vibration rotary compaction device

Read more

Summary

Introduction

Large-size graded crushed stone, which is a typical elastic–plastic granular material [1,2,3,4,5,6], finds its applications as road base, highway cushion, and as airstrips. In this paper, adopting the rotation compression used in the design method of asphalt mixtures such as Superpave, cyclic rotating axial compression tests were conducted to study the deformations of the large-sized graded crushed stone under cyclic loading using a novel testing device developed in-house to achieve the simultaneous action of axial pressure and shear stress. Cumulative deformation will occur when the road is subjected to excessive cyclic loading, and the internal structure will be destroyed when the accumulated deformation becomes excessive This will cause cracking between the road base and surface layer, which will affect the overall stability of the road structure [27]. To study the stability of the large-sized graded crushed stone mixture, it is necessary to analyze its critical shakedown load, critical failure load, and deformation relationships. The optimal gradation design method suitable for the large-sized crushed stone can be developed by analyzing the relationship between the critical loads, deformations, and gradation type of crushed stone

Stability Test and Behavior Evaluation
Influence of Gradation on Stability
Stability Analysis of Specimens with Different Gradations
Effect of Content and Density of Large-Size Crushed Stone on Critical Load
Findings
Conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.