Abstract
Abstract Surface seismic offers a promising technique to monitor CO2 flood fronts during enhanced oil recovery process. Changes in seismic signature have been observed with CO2 flooding but quantification of the seismic signature with respect to subsurface saturation is still in its infancy. This study is focused on quantification of the variation in seismic parameters (velocity and impedance) with the change in subsurface fluid type and saturation. The results of a laboratory study are presented where velocity and density were monitored as the pore fluids (formation brine and oil, and CO2) are replaced sequentially. All the experiments were performed at in-situ pressure conditions on plugs (Tuscaloosa sandstones) recovered from a well in a field currently undergoing CO2 flooding. The plugs used are characterized as fluvial (quartz~87%, clay~10%) and distributary channels (quartz~75%, clay~17%). During brine flooding on dry samples, a decrease in P-wave velocity (~2%) was observed till 95% saturation and thereafter the velocity increases by 15% during the remaining 5% saturation. After attaining 100% brine saturation, oil was pumped to displace brine till irreducible water saturation was achieved. A linear drop of 4% in velocity was observed during this step. Liquid CO2 was injected to displace oil-brine system and a drop of 8% in P-velocity was observed. Associated changes in P-wave impedance due to change in pore fluid saturation are 25%, -5% and -8% respectively for the three flooding experiment. Biot-Gassmann modeling shows good agreement with experimental results for gas-brine and oil-brine system but not for liquid CO2 flooding. 4D seismic data set acquired over the same region is quantitatively interpreted based on these laboratory measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.