Abstract

Laboratory measurements of microwave scattering at grazing incidence from superposed wind and weakly nonlinear (AK<0.024) regular long waves are presented. This study is an extension of previous measurements with wind waves only. A dual polarized (VV, HH) coherent pulsed Ku-band (14 GHz) scatterometer with temporal resolution of 3 ns was used to obtain Doppler spectra and the absolute cross section of scattered signals for grazing angles from 6/spl deg/ to 25/spl deg/ and winds in the range 2-12 m/s. A wire wave-gauge array was used to measure the wind-wave field. Measurements of the frequency and amplitude modulation of the scattered signal due to the long waves showed that the data separated into two groups. The first grouping corresponded to HH scattering in the upwind direction and was clearly associated with scattering from the dominant gravity wind-waves on the crests of the long waves. In this case, the wind speed clearly influences the frequency modulation due to long waves. The second grouping corresponded to scattering in the downwind direction and was consistent with Bragg scattering from higher frequency waves. In this case the frequency modulation due to orbital velocity of the long waves was found to be weakly dependent on wind speed over the range of parameters studied. This classification of the electromagnetic scattering was consistent with comparisons of direct and Doppler measurements of the kinematics of the surface wave field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.