Abstract

Dust grains immersed in ambient plasmas and radiation, are charged and coupled to the plasma through electric and magnetic fields. Dust grains in various astrophysical/planetary environments are generally charged by: (a) photoelectric emissions with incident radiation at photon energies higher than the work function of the material and (b) sticking of low energy electrons and ions of the surrounding plasma or by secondary electron emissions induced by incident electrons/ions at sufficiently high energies. Consequenly, the particle charge is an important parameter that influences physical and dynamical processes in the interplanetary and interstellar medium, planetary rings, interstellar dust clouds, comets and the outer atmospheres of planets. The charging properties of individual micron-size dust grains are expected to be substantially different from the bulk materials. However, no viable models for calculation of the charging properties of individual micron size dust grains are available at the present time. Currently, very limited experimental data are available for charging of individual micron-size dust grains. In this paper we give a review of the results of the measurements on charging of analogs of the interstellar as well as Apollo 11 and 17 lunar dust grains carried out on the Electrodynamic Balance Facility at the NASA-MSFC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call